

EMship Advanced Design





#### Numerical Investigation of the Hydrodynamic Performances of Marine Propeller

#### **Carlos Parra**

#### **Master Thesis**

developed at "Dunarea de Jos" University of Galati

in the framework of the

"EMSHIP"

**Erasmus Mundus Master Course** 

in "Integrated Advanced Ship Design"

Supervisor: Professor Mihaela Amoraritei

Gdynia, February 2013



#### Motivation



- Increase my knowledge in propeller design
- As a complement of the normal propulsion lectures
- Solving a real case of propulsion problem
- Understand the Lifting-line method with surface corrections
- Developing strategies in CFD propeller analysis
- Final aim: to decrease the dependance of the towing tank test and cavitation tunnels.





- Contents
- Propeller design methodology: Stages
- Definition of the problem: Given information
- Starting point: Optimum diamater and efficiency  $\eta_o$
- Lifting-Line theory: Geometry of propeller and Thrust
- Numerical Analysis instead of Experimental test

### Results





Jan 18, 2013 FLUENT 6.3 (3d, dp, pbns, rkg

Third Stage:

Analysys

### PROPELLER DESIG STAGES







### PROPELLER DESIG STAGES









# Definition of the problem

| V <sub>S</sub> | knot | 17.4            |
|----------------|------|-----------------|
| Lpp            | m    | 125             |
| В              | m    | 21.4            |
| Т              | m    | 8.5             |
| Volume         | m³   | 14758           |
| Engine type    | -    | MAN B&W 5 S46ME |
| Break Power    | kW   | 6900 MCR        |
| RPM            | -    | 129             |
| ηshaft         | -    | 0.98            |
| w              |      | 0.3144          |
| t              |      | 0.2125          |
| Z              |      | 4               |

#### Resistence



 $T = \frac{R_T}{(1-t)} = 604.55 \,[\text{kN}]$ 

 $R_{\tau} = 476.08[kN]$ 

P<sub>D</sub>= 5747.7 [kW]

 $P_D = P_B \cdot \eta_{shaft} (1 - SM)$ 

 $C_{Th} = \frac{T}{\rho V_A^2 D^2 \frac{\pi}{8}} = 0.71$ 

 $\frac{A_E}{A_0} = \frac{(1.3 + 0.3Z)T}{(po - pv)D^2} + k = 0.6$ 





# Definition of the problem

| $V_S$       | knot | 17.4            |
|-------------|------|-----------------|
| Lpp         | m    | 125             |
| В           | m    | 21.4            |
| Т           | m    | 8.5             |
| Volume      | m³   | 14758           |
| Engine type | -    | MAN B&W 5 S46ME |
| Break Power | kW   | 6900 MCR        |
| RPM         | -    | 129             |
| ηshaft      | -    | 0.98            |
| w           |      | 0.3144          |
| t           |      | 0.2125          |
| Z           |      | 4               |

#### Resistence



$$T = \frac{R_T}{(1-t)} = 604.55 \,[\text{kN}]$$

 $R_{\tau} = 476.08[kN]$ 

P<sub>D</sub>= 5747.7 [kW]

 $P_D = P_B \cdot \eta_{shaft} (1 - SM)$ 

 $\frac{A_E}{A_o} = \frac{(1.3 + 0.3Z)T}{(po - pv)D^2} + k = 0.6$ 

# Absorb the minimum power PD at certain Ship speed !!!







Carlos Parra 18-02-2013

















Polynomials forms of  $K_T$  and  $K_O$ 

$$\begin{split} K_Q &= \sum_{n=1}^{47} Cn(J)^{Sn} (P/D)^{t_n} (A_E/A_o)^{u_n} (Z)^{v_n} \\ K_T &= \sum_{n=1}^{39} C_n(J)^{S_n} (P/D)^{t_n} (A_E/A_o)^{u_n} (Z)^{v_n} \\ \eta_0 &= \frac{K_T}{K_Q} \cdot \frac{J}{2\pi} \end{split}$$

Open water Diagram for the estimated Wageningen-B series propeller





EMship Advanced Design

### Detail design stage: Lifting-line theory







# Hydrodynamic in 2D

#### NACA-66(modified)

|        | Distribution         |             |  |  |  |
|--------|----------------------|-------------|--|--|--|
| chord  | Camber               | thickness   |  |  |  |
| x/c    | y <sub>c</sub> /fmax | $y/t_{max}$ |  |  |  |
| 0      | 0                    | 0           |  |  |  |
| 0.0025 | 0.0235               | 0.0445      |  |  |  |
| 0.005  | 0.0423               | 0.0665      |  |  |  |
| 0.0075 | 0.0595               | 0.0812      |  |  |  |
| 0.0125 | 0.0907               | 0.1044      |  |  |  |
| 0.025  | 0.1586               | 0.1466      |  |  |  |
| 0.05   | 0.2715               | 0.2066      |  |  |  |
| 0.075  | 0.3657               | 0.2525      |  |  |  |
| 0.1    | 0.4482               | 0.2907      |  |  |  |
| 0.15   | 0.5869               | 0.3521      |  |  |  |
| 0.2    | 0.6993               | 0.4         |  |  |  |
| 0.25   | 0.7905               | 0.4363      |  |  |  |
| 0.3    | 0.8635               | 0.4637      |  |  |  |
| 0.35   | 0.9202               | 0.4832      |  |  |  |
| 0.4    | 0.9615               | 0.4952      |  |  |  |
| 0.45   | 0.9881               | 0.5         |  |  |  |
| 0.5    | 1                    | 0.4962      |  |  |  |
| 0.55   | 0.9971               | 0.4846      |  |  |  |
| 0.6    | 0.9786               | 0.4653      |  |  |  |
| 0.65   | 0.9434               | 0.4383      |  |  |  |
| 0.7    | 0.8892               | 0.4035      |  |  |  |
| 0.75   | 0.8121               | 0.3612      |  |  |  |
| 0.8    | 0.7027               | 0.311       |  |  |  |
| 0.85   | 0.5425               | 0.2532      |  |  |  |
| 0.9    | 0.3586               | 0.1877      |  |  |  |
| 0.95   | 0.1713               | 0.1143      |  |  |  |
| 0.975  | 0.0823               | 0.0748      |  |  |  |
| 1      | 0                    | 0.0333      |  |  |  |
|        |                      |             |  |  |  |



Final blade geometry: P/D, c/D, t/D, f/c

| profile ( | 0.2: Bloc | de notas |     |       |
|-----------|-----------|----------|-----|-------|
| Archivo   | Edición   | Formato  | Ver | Ayuda |
| 28        | 2         | 0        |     |       |
| 0.00390   | 0.005     | 070775   | (   | 0     |
| 0.00779   | 0.007     | 577675   | 9   | 2     |
| 0.01949   | 0.011     | 89638    | ć   | 5     |
| 0.03897   | 0.016     | 70507    | 9   | 2     |
| 0.11692   | 0.023     | 772375   | ć   | 5     |
| 0.15589   | 0.033     | 125265   | 9   | 2     |
| 0.31178   | 0.045     | 58 0     |     | ,     |
| 0.38973   | 0.049     | 716385   | (   | 2     |
| 0.54562   | 0.052     | 06064    | 0   | 5     |
| 0.62356   | 0.056     | 42804    | 9   | 2     |
| 0.77945   | 0.056     | 54199    | ć   | 5     |
| 0.85740   | 0.055     | 22017    | 9   | 2     |
| 0.93534   | 0.053     | 020935   | (   | ,     |







# Analysis of the design in 2D







Number of cells > 80000. For small  $\alpha$  the C<sub>L</sub> is the same for Spalart-Allamas **k-epsilon Realizable** k-omega SST

Carlos Parra 18-02-2013













# Hydrodynamic analysis in 2D

| r/R | FLUENT 2D |        | β              |                |         |          |
|-----|-----------|--------|----------------|----------------|---------|----------|
|     | $C_L$     | $C_D$  | rad            | C <sub>Q</sub> | dQ      | SFxdQ    |
| 0.2 | 0.0586    | 0.0051 | 0.8286         | 0.0466         | 0.5851  | 0.5851   |
| 0.3 | 0.3573    | 0.0030 | 0.6320         | 0.2135         | 16.8113 | 67.2454  |
| 0.4 | 0.2494    | 0.0028 | 0.5193         | 0.1262         | 25.5568 | 51.1136  |
| 0.5 | 0.2355    | 0.0028 | 0.4321         | 0.1011         | 43.1750 | 172.7000 |
| 0.6 | 0.1868    | 0.0028 | 0.3804         | 0.0719         | 56.3516 | 112.7032 |
| 0.7 | 0.1462    | 0.0027 | 0.3412         | 0.0515         | 65.7829 | 263.1316 |
| 0.8 | 0.1085    | 0.0023 | 0.3072         | 0.0350         | 64.8391 | 129.6782 |
| 0.9 | 0.0793    | 0.0025 | 0.2775         | 0.0241         | 55.0587 | 220.2347 |
| 1   | 0         | 0      | 0.2524         | 0              | 0       | 0        |
|     |           |        |                |                | Σ       | 1017.392 |
|     |           |        |                |                | ſ       | 88.344   |
|     |           | Q      | x4= <b>3</b> : | 53.374 [kN-m]  |         |          |

| $dQ = \frac{1}{2}\rho \cdot c \cdot V_R \cdot (C_L \sin\beta + C_D \cos\beta) r dr$ |   | Lift-line | 2D     | %      |
|-------------------------------------------------------------------------------------|---|-----------|--------|--------|
|                                                                                     | Т | =595.68   | 525.5  | 11.78% |
|                                                                                     | Q | =442.14   | 353.37 | 20.0%  |





# Hydrodynamic analysis in 3D



















pressure-velocity method :SIMPLE

k-epsilon Realizable with standard Wall Functions

Second Order for Pressure

Second Order Upwind for the Momentum, Turbulent Kinetic Energy Turbulent Dissipation Rate

Carlos Parra 18-02-2013







#### 1.559.103 tetrahedral elements or Cells 182 Mb.

- Angle :20° of the tetrahedral element
- Growth rate :1.2
- Max. size :300 maximum size of the element in mm
- Min. size :10 minimum size of the element in mm







By using size function in Gambit

Carlos Parra 18-02-2013





### Hydrodynamic analysis in 3D Analysis in Fluent 6.3

= 8.95 [m/s]

Vs = 17.4 Knots,  $V_A = 6.14$  [m/s] RPM = 129

| File | Grid  | Define | Solve | Adapt | Surface     | Display | Plot  | Report Parallel | Help      |   |  |
|------|-------|--------|-------|-------|-------------|---------|-------|-----------------|-----------|---|--|
| For  | ce ve | ector: | (10   | 0)    |             |         |       |                 |           | 1 |  |
|      |       |        |       |       |             | pressu  | ire   | viscous         | total     | L |  |
| zon  | e nar | name   |       |       | force force |         |       | force           | force     |   |  |
|      |       |        |       |       |             |         | n<br> | n<br>           | ا<br>     |   |  |
| pro  | oelle | er     |       |       |             | 593802. | 48    | -4742.9946      | 589059.48 | 3 |  |
|      |       |        |       |       |             |         |       |                 |           | 1 |  |

|     | Lifting-line RANS |        | difference | difference                   |  |  |
|-----|-------------------|--------|------------|------------------------------|--|--|
|     | kN                | kN     | kN         | %                            |  |  |
| T = | 595.68            | 589.06 | 6.62       | 1.11% less than Lifting-line |  |  |
| Q = | 442.14            | 417.4  | 24.74      | 5.6 % less than Lifting-line |  |  |

# Hydrodynamic analysis in 3D Post Processing in Fluent



**EM**ship

Universitas Galatiensi









#### Representation of the momentum theory







Results: Open water characteristics

#### Develope of the $K_p K_Q$ and $\eta_o$ Diagrams

|         |         |         |         | k-e reali | izable est | ándar  |        |        |        |         |         |
|---------|---------|---------|---------|-----------|------------|--------|--------|--------|--------|---------|---------|
| J       | 0       | 0.1     | 0.2     | 0.3       | 0.4        | 0.5    | 0.6    | 0.7    | 0.8    | 0.9     | 1       |
| Va[m/s] | 0       | 1.120   | 2.240   | 3.360     | 4.480      | 5.600  | 6.720  | 7.841  | 8.961  | 10.081  | 11.201  |
| T[kN]   | 1337.99 | 1199.52 | 1074.58 | 941.1     | 797.53     | 645.73 | 486.41 | 318.97 | 138.55 | -64.68  | -299.9  |
| Q[kN-m] | 860.08  | 779.36  | 705.46  | 628.59    | 546.82     | 460.15 | 368.41 | 271.25 | 165.87 | 45.97   | 93.69   |
|         |         |         |         |           |            |        |        |        |        |         |         |
| кт      | 0.3833  | 0.3436  | 0.3078  | 0.2696    | 0.2285     | 0.1850 | 0.1393 | 0.0914 | 0.0397 | -0.0185 | -0.0859 |
| 10КQ    | 0.4729  | 0.4285  | 0.3879  | 0.3456    | 0.3006     | 0.2530 | 0.2026 | 0.1491 | 0.0912 | 0.0253  | 0.0515  |
| ηο      | 0       | 0.1276  | 0.2526  | 0.3724    | 0.4837     | 0.5818 | 0.6569 | 0.6826 | 0.5541 | -1.0500 | -2.6542 |

|                   |        |        |        | Wagenir | igen Open |        |        |        |        |         |         |
|-------------------|--------|--------|--------|---------|-----------|--------|--------|--------|--------|---------|---------|
| J                 | 0      | 0.1    | 0.2    | 0.3     | 0.4       | 0.5    | 0.6    | 0.7    | 0.8    | 0.9     | 1       |
|                   |        |        |        |         |           |        |        |        |        |         |         |
| K <sub>to</sub>   | 0.3520 | 0.3248 | 0.2935 | 0.2584  | 0.2200    | 0.1787 | 0.1351 | 0.0894 | 0.0422 | -0.0062 | -0.0553 |
|                   |        |        |        |         |           |        |        |        |        |         |         |
| 10K <sub>Qo</sub> | 0.4306 | 0.4027 | 0.3707 | 0.3347  | 0.2946    | 0.2507 | 0.2030 | 0.1516 | 0.0965 | 0.0379  | -0.0242 |
|                   |        |        |        |         |           |        |        |        |        |         |         |
| η。                | 0.0000 | 0.1284 | 0.2520 | 0.3686  | 0.4753    | 0.5673 | 0.6353 | 0.6570 | 0.5561 | 0.2355  | 3.6378  |

Carlos Parra 18-02-2013





### Results: Open water characteristics



For the same  $A_{E/}$  Ao=0.7 and P/D=0.81





# Conclusions

Lifting-line increases Coefficients K<sub>T</sub>, K<sub>Q</sub> and  $\eta_o$  obtained from W-B series, increasing, A<sub>E</sub>/Ao as well.

Good prediction for THRUST using k-epsilon Realizable turbulence model.

The TORQUE result was not so reliable.

The engine with  $P_B = 6900 \text{ kW}$  would give the desired Thrust for  $V_S = 17.4 \text{ kn}$ 

It is very important to achieve good results starting with open water analysis or steady flow analysis, because in the end the final aim is to achieve good results in unsteady flows